ResearcherID Thomson Reuters  

Shamolin, Maxim V.
Create a ResearcherID badge for this researcher View publications analytics for this researcher
Close
ResearcherID: O-1170-2013
Other Names: M. V. Shamolin; M.V. Shamolin; M. B. Shamolin
URL: http://www.researcherid.com/rid/O-1170-2013
Subject: Mathematics; Mechanics
Keywords: dynamical system; many-dimensional phase pattern; cases of integrability; transcendental first integrals; rigid body; nonconservative field force; smooth manifold; optimal orbit; diagnosis space; weak topology; fractal dimensionality
ORCID: http://orcid.org/0000-0002-9534-0213
My Institutions (more details)
Primary Institution:
Sub-org/Dept: Institute of Mechanics
Role:
Description:
My URLs: http://shamolin2.imec.msu.ru
http://www.mathnet.ru/php/person.phtml?personid=8978&option_lang=eng
http://www.scopus.com/authid/detail.url?authorId=6603897789
 

Publication Groups

Publication List 1 (10)

 

This list contains papers that I have authored.

publication(s)  
First Page Previous Page Page   of  25  Go Next Page Last Page
  Sort by:    Results per page: 
1.  Title: Cases of integrability corresponding to the motion of a pendulum in the four-dimensional space
 Author(s): Shamolin, M. V.
 Conference: XLV Summer School–Conference “Advanced Problems in Mechanics” Pages: 401–413 Year: 2017
added
11-Aug-17
2.  Title: Methods of Mathematical Modeling of the Action of a Medium on a Conical Body
 Author(s): Andreev, A.V.; Shamolin, M.V.
 Source: Journal of Mathematical Sciences Volume: 221 Issue: 2 Pages: 161–168 Published: 2017
 DOI: 10.1007%2Fs10958-017-3224-8 /  Author-provided URL : http://www.scopus.com/inward/record.url?eid=2-s2.0-85010735710
added
14-Aug-17
3.  Title: New Cases of Integrability of Equations of Motion of a Rigid Body in the n-Dimensional Space
 Author(s): Shamolin, M.V.
 Source: Journal of Mathematical Sciences Volume: 221 Issue: 2 Pages: 205–259 Published: 2017
 DOI: 10.1007%2Fs10958-017-3227-5 /  Author-provided URL : http://www.scopus.com/inward/record.url?eid=2-s2.0-85010764381
added
14-Aug-17
4.  Title: New cases of integrable systems with dissipation on a tangent bundle of a multidimensional sphere
 Author(s): Shamolin, M. V.
 Source: Doklady Physics Volume: 62 Issue: 5 Pages: 262-265 Published: MAY 2017
 Times Cited: 0
 DOI: 10.1134/S1028335817050081
added
04-Jul-17
5.  Title: New cases of integrable systems with dissipation on a tangent bundle of a two-dimensional manifold
 Author(s): Shamolin, M. V.
 Source: Doklady Physics Volume: 62 Issue: 8 Pages: 392-396 Published: AUG 2017
 Times Cited: 0
 DOI: 10.1134/S1028335817080067
added
13-Sep-17
6.  Title: New Cases of Integrable Systems with Dissipation  on a Tangent Bundle of a Two-Dimensional Manifold
 Author(s): Shamolin, M.V.
 Source: Doklady Physics Volume: 62 Issue: 8 Pages: 392-396 Published: 2017
 DOI: 10.1134/S1028335817080067
added
19-Aug-17
7.  Title: Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” Named After V. V. Trofimov
 Author(s): Georgievskii, D.V.; Shamolin, M.V.
 Source: Journal of Mathematical Sciences Volume: 221 Issue: 2 Pages: 155–160 Published: 2017
 DOI: 10.1007%2Fs10958-017-3223-9 /  Author-provided URL : http://www.scopus.com/inward/record.url?eid=2-s2.0-85010723249
added
14-Aug-17
8.  Title: Some Problems of Qualitative Analysis in the Modeling of the Motion of Rigid Bodies in Resistive Media
 Author(s): Shamolin, M.V.
 Source: Journal of Mathematical Sciences Volume: 221 Issue: 2 Pages: 260–296 Published: 2017
 DOI: 10.1007%2Fs10958-017-3240-8 /  Author-provided URL : http://www.scopus.com/inward/record.url?eid=2-s2.0-85010782638
added
14-Aug-17
9.  Title: Новые случаи интегрируемых систем сдиссипацией на касательном расслоении кмногомерной сфере
 Title: New Cases of Integrable Systems with Dissipation on the Tangent Bundle of Multidimensional Sphere
 Author(s): Шамолин, М.В.; Shamolin, M.V.
 DOI: 10.7868/S0869565217140080
added
11-Sep-17
10.  Title: A multidimensional pendulum in a nonconservative force field under the presence of linear damping
 Author(s): Shamolin, M. V.
 Source: Doklady Physics Volume: 61 Issue: 9 Pages: 476-480 Published: SEP 2016
 Times Cited: 0
 DOI: 10.1134/S1028335816090111
added
28-Nov-16
publication(s)  
First Page Previous Page Page   of  25  Go Next Page Last Page
  Sort by:    Results per page: